NAME AND SURNAME:

digits?

(A) 15°

MATHEMATICS - TEST 1

Exactly one from the given answers (A)–(D) at each problem is always true. Mark right answers with crossing in this paper.

	(A)	1 032	(B)	1 021	(C)	1 234	(D)	1 023	
2.		_		the ratio he angle		_	DB to	the angle AB	D is 1:5.

1. What is the smallest four-digit positive integer which has four different

3. What is the integer x so that $\frac{x}{9}$ lies between $\frac{71}{7}$ and $\frac{113}{11}$?

(B) 18° (C) 72° (D) 75°

- (A) 89 (B) 91 (C) 92 (D) 95
- 4. If |x-2| = p, where x < 2, then x+1 equals

 (A) -2 (B) 3-p (C) |2p-2| (D) 2p-2
- **5.** A chord which is the perpendicular bisector of a radius of length 12 in a circle has length
 - (A) 27 (B) $12\sqrt{3}$ (C) $6\sqrt{3}$ (D) $3\sqrt{3}$

- **6.** The sum $1 2 + 3 4 + 5 \cdots 2014 + 2015$ is equal
 - (A) 1008
- (B) 1007
- (C) 1
- (D) -1007
- 7. We are given a triangle with sides of lengths 6, 8, 10. The radius of its circumcircle is
 - (A) 4
- (B) 4.5 (C) 5 (D) 6
- **8.** Let $S = (x-1)^3 + 3(x-1)^2 + 3(x-1) + 1$. Then S is equal
 - (A) $(x-2)^3$ (B) $(x-1)^3$ (C) x^3-1 (D) x^3

- 9. Let ABCDEF be a regular hexagon in the plane and ABGHJ be a regular pentagon lying in the opposite half-plane with respect to the line AB as the hexagon ABCDEF. The measure of the angle FJA is
 - (A) 17.5°
- (B) 22.5°
- (C) 24°
- (D) 30°
- 10. What is the smallest prime number dividing the sum $3^{2014} + 7^{2015}$
 - (A) 2
- (B) 5
- (C) 11
- (D) $3^{2014} + 7^{2015}$

MATHEMATICS – TEST 1

Answers:

- **1.** (D)
- **2.** (D)
- **3.** (C)
- **4.** (B)
- **5.** (B)
- **6.** (A)
- **7.** (C)
- 8. (D)
- **9.** (C)
- **10.** (A)